新闻中心

NEWS CENTER

解读|双碳目标下我国能源电力系统发展前景和关键技术

作者:中能电力  发布时间:2022-04-14 09:28:14  浏览:1711

  ——“十四五”能源领域科技创新规划解读之二
  在一系列国家战略规划指导下,我国未来能源电力系统的发展蓝图和关键技术途径有了明确的导向性,即以“2030年前碳达峰、2060年前碳中和”为战略目标,以落实“构建清洁低碳安全高效的能源体系、构建以新能源为主体的新型电力系统”为实施路径。本文从新型电力系统主要特征和核心指标出发,构建“双碳”目标下我国能源电力系统发展情景,分析我国能源电力转型实现路径和关键技术需求,提出综合能源生产单元设想,为能源转型路径规划及战略制定提供一定的参考。
  一、新型电力系统主要特征和核心指标
  新型电力系统作为未来我国能源体系的核心组成部分,具有5个主要特征:高比例可再生能源广泛接入、高比例电力电子装备大规模应用、多能互补综合能源利用、数字化智能化智慧能源发展、清洁高效低碳零碳转型。
  为进一步量化描述上述特征,体现新型电力系统在能源转型中的重要作用,提出以下5项核心指标:非化石能源在一次能源消费中比重、非化石能源发电量在发电量中比重、电能在终端能源消费中比重、系统总体能源利用效率、能源电力系统碳排放总量。
  二、“双碳”目标下我国能源电力系统发展情景分析
  将2021~2060年40年期,划分为2020~2030年、2030~2050年、2050~2060年三个时间段,分别为前、中、后3个时间段,预估“双碳”目标下能源电力总体发展需求:一次能源消费总量指标方面,2020~2030年(前段),考虑经济社会发展水平的刚性增长需求,仍将保持每5年4亿~5亿吨标准煤的增长速度,至“十四五”末达到55亿吨标准煤左右,2030年左右达到峰值59亿吨标准煤,此后呈现下降趋势;2030~2050年(中段),前15年间每5年下降1亿吨标准煤,2045年降至56亿吨标准煤后基本保持稳定;2050~2060年(后段),仍具有小幅下降空间,2060年保持在55亿吨标准煤左右水平。
  非化石能源消费占比指标方面,总体呈现前后两段稳定增长,中段加速增长的趋势。2030年前(前段),考虑目前新能源发电、电网安全稳定运行控制、储能等方面技术发展水平尚未取得突破性进展,灵活调节资源和技术手段仍较为紧缺,无法全面支撑可再生能源高比例接入和大规模应用,仍需要煤电等传统发电机组提供重要的基础保障作用,而非化石能源以一次电力为主要消费形式,故这一时段非化石能源消费在一次能源消费总量中的占比应保持相对稳定的增长速度,避免过快增长对电力系统安全稳定带来的冲击,以保证能源供应平稳过渡。该指标于“十四五”末达到20%,2030年达到25%,满足国家最新提出的目标要求。2030~2050年(中段),非化石能源加速发展,在一次能源消费中的占比快速提高,二十年间由25%提高至75%,力争2050年为2060年实现碳中和创造基础条件。2050~2060年(后段),仍将在较高水平基础上保持一定速度的平稳增长,2060年达到90%,为碳中和目标实现提供重要支撑。
  全社会用电总量指标方面,综合电气化等因素,总体保持增长且速度呈现“前高后低”趋势。在“十四五”和“十五五”期间(前段),分别以4.5%和3.5%年均增速保持稳定增长,至2030年达到11.1万亿千瓦时的水平。2030~2050年(中段),年均增长率逐步下降,2050年全社会用电量为当前水平的2倍,约为16万亿千瓦时。2050~2060年(后段),增速进一步放缓,2050~2055年间年均增速仅为1%,2055年后基本保持稳定不再增长。
  基于上述能源电力发展需求,预估2020~2060年我国电力装机及发电结构,由此得到风光发电量、煤电发电量、非化石能源发电量占比等关键参数演化趋势。
  电力装机方面,随着风光等新能源发电快速发展,非化石能源发电在电力装机总量中的占比持续提高,“十四五”末将超过50%。新能源发电装机不断增加,2025~2030年间,风光装机总量超过煤电,2030年将达到16.1亿千瓦,占装机总量41.5%;2035年达到24.3亿千瓦,超过电力装机总量的50%,成为装机主体;2060年达到70.1亿千瓦,在电力装机总量中的占比超过85%。
  发电量方面,2030~2035年间非化石能源年发电量超过50%,形成非化石能源发电为主体的电力系统;风光发电量快速提升是非化石能源发电量占比提高的主要原因,2030年风光发电量达到2.3万亿千瓦时,占总发电量20%;2035~2040年间风光发电量开始超过煤电,之后煤电进一步加速退役,风光发电量在总发电量中占比加速提高,2045~2050年间超过50%,成为发电主体;2060年风光发电量11.9万亿千瓦时,占总发电量69.2%,为构建以新能源为主体的新型电力系统创造必要条件。
  针对上述我国能源电力发展场景,初步测算能源电力系统年碳排放指标,可得到以下结论:能源系统和电力系统的年碳排放均可实现2030年前达峰,2050年和2060年,能源系统年碳排放分别降低为峰值的28.0%、10.5%,电力系统碳排放分别降低为峰值的25.4%、1.6%,为实现2060年前碳中和目标奠定基础。
  三、我国能源电力转型实现路径和关键技术
  为推动我国能源电力转型、落实“两个构建”,需考虑5个方面实现路径。一是大力开发利用可再生能源,发展核能、生物质能、地热能等非化石能源综合利用,在电力系统中形成以非化石能源为主的电源结构,是实现能源转型的关键;二是积极推动煤电灵活性改造,为高比例可再生能源电力系统运行提供紧急备用和灵活调节能力,探索煤电碳资源综合利用,助力煤电实现低碳无碳转型;三是持续推进终端用能的电气化,实现以电为中心的多能互补用能结构,大幅提高电能在终端能源消费中比重,提高能源综合利用效率;四是加强电力电子和储能等关键技术创新,通过数字化转型,推动新一代输配电网和能源互联网建设,促进高比例可再生能源电力消纳,确保电力系统安全稳定运行;五是完善能源转型各项政策,坚持市场化改革方向,加快完善推动绿色电力、碳交易市场建设,助力国家应对气候变化碳中和目标的实现。
  技术进步是构建新型电力系统的根本动力,围绕未来电力系统以新能源为主体的发展需求,综合考虑新能源开发、传统能源转型两个角度,从系统安全、低碳减排、综合能源、灵活性需求等多个方面,提出以下10类关键技术需求:1.高效低成本电网支持型可再生能源发电和综合利用技术;2.燃煤发电提高灵活性低碳排放和碳资源利用技术;3.高可靠性低损耗新型电力电子元器件装置和系统技术;4.安全高效低成本长寿命新型储能技术;5.清洁高效低成本氢能生产储运转化和应用技术;6.超导输电和新型综合输能技术;7.新型电力系统规划运行调度和仿真控制保护技术;8.数字化智能化综合能源电力系统技术;9.信息物理融合的能源互联网/物联网技术;10.综合能源电力市场技术。
  四、综合能源生产单元(IEPU)设想
  “双碳”目标下,我国能源电力系统清洁低碳转型任务艰巨,如何科学推进传统煤电升级改造及有序退出、同时促进新能源消纳成为能源转型路径规划和相关战略制定的重要议题。我们提出一种融合火电机组碳捕集、燃煤机组混烧生物质、可再生能源电解水制氢、甲烷/甲醇合成等技术的设想——综合能源生产单元(以下简称“IEPU”),期望能作为火电低碳/无碳转型路径方案的一种选择。
  IEPU基本结构如图1所示,其基本工作方式为:白天利用低成本的光伏发电制取绿氢,夜间利用低谷时段电网供电或火电机组发电,利于电解制氢系统持续稳定工作,产出的氢气与煤电机组捕集的碳进一步合成生产甲烷/甲醇等绿色燃料或化工产品。
  与此同时,IEPU也可有不同类型的结构方案:IEPU所需的碳可由火电厂碳捕集,未来也可从空气中捕集;IEPU可由风光发电与电解水制氢装置、水电厂与电解水制氢装置组成,生产的绿氢与空气中氮气耦合制氨;IEPU可由燃气电厂与风光发电及电解水制氢、储氢耦合组成,未来燃气电厂的燃料将由绿氢提供,成为应对长周期能源不平衡的绿色重要措施。IEPU本身可以是实体的也可以是虚拟的。
  IEPU将电解制氢、可再生能源发电、甲醇/甲烷/氨合成、二氧化碳捕集等设备集成为一体,具有以下两个方面的优点:一是以电解制氢装置作为可控负荷,通过与火电、水电等可调机组联合运行,在单元内部各子系统协同优化的同时,实现与电网互动,成为具有高灵活性的虚拟发电单元,为高比例新能源电力系统应对长周期能源供需不平衡提供灵活性支撑;二是通过二氧化碳直接与氢气合成,生产甲烷、甲醇等便于存储、运输的绿色燃料或作为重要化工原料产品,一方面可规避大规模二氧化碳捕集后压缩及封存的高额成本投入,另一方面借助合理可行的产品收益模式,有利于火电企业推广应用二氧化碳捕集与利用技术,在促进火电行业碳减排及转型发展的同时,所生产的氢气本身及与二氧化碳、氮气合成生成的绿色燃料化工原料产品,也可为能源相关领域化石燃料和原料替代提供一定的来源补充。

  综合能源生产单元解决方案与数字化智能化技术相结合,可构成未来能源供应侧的智慧型基本单元,与预想的能源消费侧智慧型基本单元一起,组成未来新型电力系统能源生产消费的基础单元结构,可能对电网的储能需求、灵活性供应及调控模式产生重要影响。该发展模式的实现将会促进能源领域不同行业之间的融合,对此需要体制机制的突破和创新。

转载:互联网(侵权请联系删除)